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Abstract

Effective medium approximations are developed to estimate the conductivity of composite media that are random mixtures of inho-
mogeneities of various shapes. The approximations use dilute solution results for inclusions of certain shapes embedded in the effective
medium matrix, and incorporate weight parameters to reflect the proportions of the inhomogeneities of various shapes from different
component materials in a mixture. Since the approximations are based on the differential scheme, which is realizable by a certain hier-
archical model, they never violate the mathematical requirements imposed upon a homogenized property including the bounds. As illus-
trations, the approximations are used to interpret empirical data on the electrical conductivity of water-saturated sedimentary rocks, and
the thermal conductivity of some multiphase dispersions of metallic particles in silicone rubber matrix.
� 2008 Published by Elsevier Ltd.
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1. Introduction

Macroscopic (effective) properties of randomly inhomo-
geneous materials, which appear statistically homogeneous
and isotropic, depend upon the properties, volume propor-
tions, and particular geometry of the constituents. The
micro geometry of a random mixture is usually irregular,
which makes the problem of direct calculation of an effec-
tive property intractable. With the only available informa-
tion about the properties and volume proportions of the
component materials, the best estimates for the effective
conductivity (thermal, electrical, . . .) ke of an isotropic com-
posite are those of Hashin and Shtrikman [1–4]

P kð2kmaxÞP ke P P kð2kminÞ; ð1Þ
where

P kðk�Þ ¼
XN

i¼1

vi

ki þ k�

 !�1

� k�; ð2Þ

kmax ¼ maxfk1; . . . ; kNg; kmin ¼ minfk1; . . . ; kNg; ð3Þ
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vi; ki ði ¼ 1; . . . ;NÞ are the volume proportions and con-
ductivities of the constituents of the N-component
composite.

To get more-definite values of the effective properties,
one should incorporate specific information about the par-
ticular geometry of a composite into some idealistic geo-
metric model in various effective medium approximations
[5–20]. To determine the fields within the inhomogeneities,
one often considers each of them as an inclusion of spher-
ical (or ellipsoidal) shape embedded in the matrix of effec-
tive medium, and uses the respective exact dilute solution
result. However, the inhomogeneities within a practical
random mixture generally would not have a single specific
shape, but various ones, and this fact should be accounted
for in a weighted effective medium scheme presented in this
study.
2. Weighted effective medium approximation

To find an effective property one should determine the
respective fields within the inhomogeneities of a mixture.
The inhomogeneities from a particular composite may



Nomenclature

ke the effective conductivity of a composite
ki ði ¼ 1; . . . ;NÞ the conductivities of the constituents of

the N-component composite
kI; kM the conductivities of the inclusion and matrix

components
kw the electrical dc conductivity of the water filling

pores

vi ði ¼ 1; . . . ;NÞ the volume proportions of the compos-
ite’s components

vI the volume proportion of the inclusion compo-
nent

vw the porosity
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have some relatively specific shapes. However, without any
definite information about the specific arrangements of the
inhomogeneities within a composite (as it is usually the
case for a completely random mixture, consult e.g.
[6,7,21]), the best one can do, in calculating the fields within
an inhomogeneity of certain shape, is to consider the inho-
mogeneity as embedded in the effective medium. Using the
dilute solution result for an inclusion (of conductivity kI)
embedded in the matrix (of conductivity kM) one has the
formal expression for the effective conductivity ke of the
dilute mixture:

ke=kM ¼ 1þ vIDðkI; kMÞ þOðv2
I Þ; vI � 1; ð4Þ

where vI is the volume fraction of the inclusions, DðkI; kMÞ
some inclusion-shape-dependent function. If all the inho-
mogeneities of the composite have approximately the same
shape, the effective medium approximation equation for
the effective conductivity ke of the N-component material
reads (see more details in Appendix A)

XN

i¼1

viDðki; keÞ ¼ 0
XN

i¼1

vi ¼ 1

 !
: ð5Þ

This effective medium equation in the classical sense, by
construction, should be restricted to the class of quasisym-
metric mixtures because it treats all the inclusions
geometrically in the same fashion. More generally, the
inhomogeneities from different component materials would
have different shapes represented by the different shape
functions DiðkI; kMÞ, hence the respective effective medium
equation should have the form

XN

i¼1

viDiðki; keÞ ¼ 0: ð6Þ

Generally, the inhomogeneities of every i-component mate-
rial may also have different shapes described by the shape
functions DiaiðkI; kMÞ and respective volume proportions
viaiðai ¼ 1; . . . ;NiÞ of the inclusions having the same
shapes. Then we have

XN

i¼1

XNi

ai¼1

viai Diaiðki; keÞ ¼ 0
XNi

ai¼1

viai ¼ vi; i ¼ 1; . . . ;N

 !
:

ð7Þ
Eq. (7) is the general weighted effective medium equation
for N-component mixture, which incorporates the weight
parameters viai and the respective shape functions Diai

reflecting distribution of various shapes within a practical
random mixture.

Using the differential scheme [5–7,11,13,15–17] one can
show that the effective conductivities determined by the
Eqs. (5), (6), or (7), correspond, at least, to some geometric
hierarchical models constructed incrementally, which adds
at each step an infinitesimal amount of well separated inho-
mogeneities of all shapes and from all the constituents
(with the relative proportions corresponding to the final
composition of the composite) into the mixture of the pre-
vious step (constructed from the geometrically similar but
smaller-scale inhomogeneities!) until the final composition
of the mixture is reached. This fact secures the effective
medium approximations (5)–(7) certain mathematical justi-
fication: they never violate the bounds (1)–(3) or any exact
mathematical restrictions imposed upon an effective
property.

It is difficult to find the explicit expression of the shape
function DðkI; kMÞ for an inclusion of arbitrary shape.
From (1)–(4) one can find that

ðkI� kMÞ
1

3
kIþ

2

3
kM

� ��1

6DðkI;kMÞ

6 ðkI� kMÞ
1

3
k�1

I þ
2

3
k�1

M

� �
; ð8Þ

when kI > kM, and the order is reversed when kI < kM.
For an ellipsoidal inclusion with the aspect ratio a:b:c,

one has [13]

DðkI; kMÞ ¼
kI � kM

3

1

kIAþ kMð1� AÞ þ
1

kIBþ kMð1� BÞ

�

þ 1

kIC þ kMð1� CÞ

�
; ð9Þ

where

A ¼ abc
2

Z 1

0

dt
ða2 þ tÞDðtÞ ; B ¼ abc

2

Z 1

0

dt

ðb2 þ tÞDðtÞ
;

C ¼ abc
2

Z 1

0

dt
ðc2 þ tÞDðtÞ ; DðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ tÞðb2 þ tÞðc2 þ tÞ

q
:

ð10Þ
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Fig. 1. Hashin–Shtrikman bounds, extreme spheroidal models (sphere-1-
platelet-2 and platelet-1-sphere-2), and differential models (sphere-1-
matrix-2 and sphere-2-matrix-1) for the effective conductivity of two-
phase mixtures with k1 ¼ 1; k2 ¼ 20; v2 ¼ 0! 1.
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For a spheroidal inclusion with the aspect ratio a:b:b, (9)
and (10) reduce to

DðkI;kMÞ¼
kI�kM

3

1

kIAþkMð1�AÞþ
4

kIð1�AÞþkMð1þAÞ

� �
;

ð11Þ
where

A ¼ ab2

2

Z 1

0

dt

ða2 þ tÞ3=2ðb2 þ tÞ
: ð12Þ

The three limiting cases of a spheroidal inclusion are:
sphere A ¼ 1=3; circular cylinder (needle) A ¼ 0; circular
disk (platelet) A ¼ 1. According to (7), (11), (12), the
weighted effective medium approximation for the N-com-
ponent mixture having just these extreme shapes is deter-
mined by the equation

XN

i¼1

ðki� keÞ
9vis

kiþ 2ke

þ vin
1

ke

þ 4

kiþ ke

� �
þ vip

1

ki
þ 2

ke

� �� �
¼ 0;

ð13Þ
where vis; vin; vip ði ¼ 1; . . . ;NÞ are the weights (volume
fractions) of the inhomogeneities from the i-component
that have the spherical, needle, and platelet shapes,
respectively.

More general, according to (7), (11), (12), the weighted
spheroidal effective medium approximation for the N-com-
ponent mixture having the range of shapes with geometric
parameters Aiai and respective weights (volume propor-
tions) viai would be

XN

i¼1

ðki � keÞ
XNi

ai¼1

viai

1

kiAiai þ keð1� AiaiÞ

�

þ 4

kið1� AiaiÞ þ keð1þ AiaiÞ

�
¼ 0: ð14Þ

Eq. (14) contains a large amount of possible shapes,
including the extreme one-dimensional needle, two-dimen-
sional platelet, and three-dimensional spherical ones of
(13) as well as intermediate shapes between. For an exam-
ple we consider two-component spheroidal mixtures with
N ¼ 2; N 1 ¼ N 2 ¼ 1, and respective geometric parameters
A1;A2; k1 ¼ 1; k2 ¼ 20; v2 ¼ 0! 1. The mixtures with the
geometric parameters varying over all the range
0 6 A1; A2 6 1, cover the major part between the bounds
(1)–(3) and enveloped by the two extreme sphere-1-plate-
let-2 (spheres from phase 1 mixed with platelets from phase
2) and platelet-1-sphere-2 (platelets from phase 1 mixed
with spheres from phase 2) models, as reported in Fig. 1.
This observation indicates that the spheroidal models in
our particular scheme here might be representative enough
to approximate most random mixtures (in the Maxwell–
Fricke model for two-phase mixtures used in [12], the sphe-
roidal inclusions are shown to be sufficient to cover all at
the interval between the Hashin–Shtrikman bounds).

On a higher level of generality, according to (7), (9),
(10), we have the weighted ellipsoidal effective medium
approximation with the respective weights viai and geomet-
ric parameters Aiai ;Biai ;Ciai :XN

i¼1

ðki � keÞ
XNi

ai¼1

viai

1

kiAiai þ keð1� AiaiÞ

�

þ 1

kiBiai þ keð1� BiaiÞ
þ 1

kiCiai þ keð1� CiaiÞ

�
¼ 0: ð15Þ

Eq. (15) has unique solution (see Appendix B).
To use the most general weighted effective medium

approximation (7) one should define the shape function
D from the dilute solution result (4) for an inclusion of
arbitrary shape explicitly. Clearly there is no general ana-
lytical solution. One possible way to approximate the func-
tion is to compare the numerical result (4) for some dilute
solution of the inclusion of the given shape with that of
spheroidal one from (11) and some fitting free parameter
A, or with that of the ellipsoidal one from (9), (10) and
more fitting parameters A;B;C, or broader with any multi-
parameter function satisfying restriction (8). However, in
this work, we would not elaborate further in this direction.
The free weight parameters Aiai of (14), or those of (15) may
also be chosen just to fit empirical data for the macroscopic
conductivity of a practical mixture. Then the parameters
have the physical sense as reflecting the distribution of pos-
sible shapes within the mixture. An illustrative example of
the application of the weighted effective medium approxi-
mation will be given in the next section.

3. Water-saturated porous rocks

Experimental data for the electrical dc conductivity of a
large variety of water-saturated sedimentary rocks leads to
an empirical law for the aggregate conductivity [22,9]
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Fig. 2a. Some conductivity against porosity curves from Archie’s law
(with m ¼ 1:4; 1:8; 3), and models containing proportions of the water-
saturated pores in the forms of water films ðgpÞ, pockets ðgsÞ, and tunnels
(the remaining).
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ke ¼ kwvm
w; 1:3 6 m 6 4; ð16Þ

where kw and vw are, respectively, the water conductivity
and volume fraction of water-filled pores (the porosity);
m is called the cementation index.

The considered sedimentary rocks can be considered as
two-phase media composed of solid rock grains of zero
conductivity ðkr ¼ 0Þ and water filling the intergranular
pore spaces. Geometric rock models, that can explain the
empirical law (16) have been the subject of many studies
(e.g. [9,10,13,15]). The highly consolidated rock having
interconnected pore space filled with water can be modeled
as a random mixture of the components: the solid rock
granules of approximately spherical form (volume fraction
vrs); the platelet water films (volume fraction vwp) posi-
tioned between the neighboring grains; the cylindrical (nee-
dle) water tunnels (volume fraction vwn) positioned at the
intersections of the grain boundaries; the spherical water
pockets (volume fraction vws) positioned at the intersection
corners of the rock grains (else the intersections of the
water tunnels). This is the picture of a two-phase mixture
having the geometrically complicated and interconnected
water phase with volume fraction vw ¼ vws þ vwp þ vwn ¼
1� vrs. Application of the weighted effective medium
approximation (13) would yield the equation determining
the effective conductivity ke of the rock aggregate (keeping
in mind kr ¼ 0)

ðkw � keÞ
9vws

kw þ 2ke

þ vwn

1

ke

þ 4

kw þ ke

� ��

þvwp
1

kw

þ 2

ke

� ��
� 9

2
vrs ¼ 0: ð17Þ

Let the geometric parameter gp ¼ vwp=vw denote the pro-
portion of the conductivity-effective water film within the
water phase filling pore space, while gs ¼ vws=vw that of
the water pockets, which contribute least to the aggregate
conductivity (the remaining water tunnels yield intermedi-
ate contributions). Then Eq. (17) can be rewritten as

ðkw � keÞ
9gs

kw þ 2ke

þ ð1� gs � gpÞ
1

ke

þ 4

kw þ ke

� ��

þgp

1

kw

þ 2

ke

� ��
� 9ð1� vwÞ

2vw

¼ 0: ð18Þ

In Fig. 2a we plot some empirical curves (16) correspond-
ing to m ¼ 1:4; m ¼ 1:8; m ¼ 3, and some models from
(18) closed to them with geometric characteristics
gp ¼ 0:9; gs ¼ 0:1; gp ¼ 0:3; gs ¼ 0:6; gp ¼ 0:1; gs ¼ 0:9;
respectively. In Fig. 2b we report the Hashin–Shtrikman
upper bound (from (1), the lower bound in this case is
the trivial zero conductivity), the extreme curves of the
empirical law (16) at m ¼ 1:3 and m ¼ 4, and some models
of (18): gp ¼ 1; gs ¼ 0 (pure platelet water films);
gp ¼ 0; gs ¼ 0 (pure water tunnels); gp ¼ 0:2; gs ¼ 0:7
(the water-filled pore space includes all three extreme
shapes: films, pockets, tunnels). The model gp ¼ 1; gs ¼ 0
represents the highest values of the aggregate conductivity
the weighted spheroidal approximation can give.

4. Differential scheme equations and some silicone rubber
matrix mixtures

Consider a matrix mixture as a (N + 1)-component com-
posite with the inclusions from N components dispersed in
a continuous phase (the (N + 1)th component). Each inclu-
sion component is supposed to be composed of the inclu-
sions made of the same material and having the same
shape characterized by the same shape function DðkI; kMÞ
stated in (4). To construct the (N + 1)-component compos-
ite by the differential scheme, one starts with the base
matrix, and adds incrementally well separated inclusions
from the remaining N components in their relative volume
proportions until the final composition is reached
[5–7,11,13,15,16]. The resulting differential equation corre-
sponding to the weighted effective medium approximation
procedure proposed above has the form (see Appendix A)

dk
dt
¼ k

1� vIt

XN

i¼1

XNi

ai¼1

viai Diaiðki; kÞ; vI

¼
XN

i¼1

XNi

ai¼1

viai ; kð0Þ ¼ kNþ1; 0 6 t 6 1; ð19Þ

and ke ¼ kð1Þ. In the limit of vanishing matrix phase
vNþ1 ¼ 0; vI ¼ 1, from (19) we obtain the weighted effective
medium approximation for the N-phase mixture stated in
(7). While being realizable-at least-by a nonrealistic hierar-
chical model, the scheme aims to approximate behavior of
usual nonhierarchical mixtures. The differential scheme can
take into account the shapes of the inclusions, but not that
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Table 1
Approximations and experimental values for some two-phase matrix
mixtures: kexp – experimental value; ku

HS; k
l
HS – Hashin–Shtrikman bounds;

ksp – sphere-1-platelet-2 approximation; ksm – sphere-1-matrix-2 approx-
imation; k1 and v1 are the thermal conductivity and volume fraction of the
dispersed phase; the conductivity of the matrix phase is k2 ¼ 0:384 (all in
W m�1 K�1)

k1 v1 ku
HS ksp kexp ksm kl

HS

204.14 0.05 7.297 0.449 0.474 0.447 0.444
0.16 23.36 0.692 0.765 0.645 0.602
0.28 42.36 1.185 1.038 1.018 0.829

34.6 0.05 1.550 0.448 0.462 0.445 0.443
0.16 4.258 0.674 0.663 0.634 0.595
0.24 6.362 0.937 0.860 0.840 0.732

89.96 0.05 3.427 0.450 0.458 0.446 0.444
0.16 10.50 0.687 0.656 0.641 0.600
0.24 15.99 0.975 0.815 0.860 0.742

8.04 0.05 0.650 0.440 0.433 0.438 0.436
0.16 1.265 0.619 0.590 0.596 0.570
0.24 1.742 0.802 0.732 0.754 0.688
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of the matrix phase, except the fact that the phase remains
continuous throughout the whole process. Alternatively,
one could also take the matrix phase as composed of inclu-
sions of extreme platelet form (see (11) with A ¼ 1), and
then apply the weighted effective medium approximation
(7) directly to the composite. The inclusions of extreme
platelet form (approaching infinitesimal thickness and infi-
nite extensions) disorderly oriented in the material space
also form interconnected phase as a matrix one. There is
no reason to foretell generally which approaches ((19) or
(7)) approximates reality better, while numerical results
(as we shall see) indicate that both approaches yield results
close to each other in many cases. In the mean time, the
second one (that of (7)) appears simpler. As a first
example we consider again the two-phase mixtures of
Fig. 1. The figure has presented, among others, the graph-
ics of the sphere-1-platelet-2 curve, which is the solution of
the respective Eq. (7)

1� v1 ¼
k2

ke

� �1=3 k1 � ke

k1 � k2

; ð20Þ

and is near the Hashin–Shtrikman upper bound. Also gi-
ven in the figure is the platelet-1-sphere-2 mixture curve,
which is near the Hashin–Shtrikman lower bound. On
the other hand, the solution ke of the Eq. (19) for the
sphere-1-matrix-2 mixture (spherical inclusions from phase
1 dispersed in the matrix from phase 2) is

v1 ¼ 1� 9
ðk1 � keÞkek2

ðk2 � keÞðke þ 2k2Þðk1 þ 2keÞ

� ��1

; ð21Þ

which is close to the sphere-1-platelet-2 curve given in (20)
over a range of parameters. The sphere-2-matrix-1 curve is
close to that of the platelet-1-sphere-2 mixture, as can be
seen in Fig. 1.

Direct application of the weighted effective medium
approximation (7) to the water-saturated porous rocks as
given in Section 3 also yields the results close to those from
the differential matrix model (19) given in [13,15].

Next, we apply the weighted effective medium approxi-
mation (7) as well as the differential matrix one (19) to
some composite mixtures made from RTV-60 silicone rub-
ber as the continuous phase and aluminum, lead, nickel,
and bismuth as the discontinuous phases, experimental
measurements on the thermal conductivity of which are
reported in [23]. The thermal conductivity of the silicone
rubber is 0.384, while those of aluminum, lead, nickel,
and bismuth are 204.14, 34.6, 89.96, and 8.04, respectively
(all in W m�1 K�1). The results of measurements as well as
calculations from the model (20) and (21) for some two-
phase mixtures (phase 2 is the silicone rubber matrix, phase
1 is composed of spherical inclusions from the respective
metal) in some volume proportions of the phases are com-
pared in Table 1: ksp is the sphere-1-platelet-2 model (20),
ksm is the sphere-1-matrix-2 model (21), kexp is the experi-
mental value. Hashin–Shtrikman upper ðku

HSÞ and lower
ðkl

HSÞ bounds from (1) to (3) are also included in the Table.
We see that both approximations are close to the experi-
mental values.

Further, consider three-phase mixtures with spherical
inclusions from two metals phases (phases 1 and 2) dis-
persed in the silicone rubber matrix (phase 3). The
weighted effective medium approximation (7) applied to
the mixture (sphere-1-sphere-2-platelet-3, ke ¼ kssp) is

v1ðk1 � keÞ
9

k1 þ 2ke

þ v2ðk2 � keÞ
9

k2 þ 2ke

þ v3ðk3 � keÞ
1

k3

þ 2

ke

� �
¼ 0: ð22Þ
The differential scheme (19) applied to the model (sphere-1-
sphere-2-matrix-3) ke ¼ kssm has particular form



Table 2
Approximations and experimental values for some three-phase matrix mixtures: kexp – experimental value; ku

HS; k
l
HS – Hashin–Shtrikman bounds; kssp –

sphere-1-sphere-2-platelet-3 approximation; kssm – sphere-1-sphere-2-matrix-3 approximation; k1; k2 and v1; v2 are the thermal conductivities and volume
fractions of the dispersed phases; the conductivity of the matrix phase is k3 ¼ 0:384 (all in W m�1 K�1)

k1 k2 v1 v2 ku
HS kssp kexp kssm kl

HS

204.14 89.96 0.06 0.04 11.79 0.541 0.559 0.525 0.511
0.13 0.09 26.21 0.899 0.804 0.802 0.705

204.14 8.04 0.04 0.08 6.514 0.558 0.637 0.541 0.525
0.15 0.03 22.10 0.783 0.770 0.682 0.629

8.04 34.6 0.04 0.08 1.885 0.555 0.592 0.539 0.524
0.10 0.08 3.351 0.698 0.692 0.657 0.614
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dk
dt
¼ k

1� vIt
3v1

k1 � k
k1 þ 2k

þ 3v2

k2 � k
k2 þ 2k

� �
;

vI ¼ v1 þ v2; kð0Þ ¼ k3; 0 6 t 6 1; ð23Þ

and kð1Þ ¼ ke. The solutions ke ¼ kssp of (22), and ke ¼ kssm

of (23) are reported in Table 2 together with experimental
data kexp, and Hashin–Shtrikman bounds ðku

HS; k
l
HSÞ. Both

approximation are close to the experimental values.
The simple weighted effective medium approximation

(7) as well as the more general differential matrix model
(19), by construction, is always realizable, at least, by cer-
tain hierarchical models. Hence, both approximations
never violate strict mathematical requirements for an
effective property, including the bounds. The schemes are
flexible enough that they could include not only the prop-
erties and volume fractions of the components, but also
the range of shapes for the inhomogeneities. They can also
take into account the continuity of the matrix phase in a
matrix composite, by starting the differential scheme (19)
from the matrix phase, or treating it as a disordered net-
work of extreme platelet inhomogeneities in (7). Still, the
schemes are just simple convenient engineering approxima-
tions, which could not incorporate specific information
about arrangements of the inhomogeneities in the material
space. However, such arrangements for many practical
random composites are often irregular and can hardly be
given through some simple mathematical description to
be used in engineering applications. The schemes cannot
incorporate also the relative size distributions of the inho-
mogeneities, except for the trivial case: the inclusions are
widely separated in sizes. In that case, the set of those inho-
mogeneities of smaller size (together with the matrix)
should be treated firstly as an effective medium before the
next construction, which involves bigger inclusions,
according to the differential scheme, as well as common
sense.
5. Conclusion

To determine theoretically the macroscopic conductivity
of a randomly inhomogeneous continuum, firstly one
should find the respective fields within the constituent inho-
mogeneities. To calculate the fields within every separated
inhomogeneity from a completely random mixture, as
often in many cases, we have to consider the inhomogene-
ity as embedded in the effective medium. The effective med-
ium approximation is started from this dilute solution
result. The weighted effective medium approximation could
incorporate the distribution of various shapes of inhomo-
geneities with respective weights, hence might be flexible
enough to approximate practical mixtures. The simple
weighted spheroidal approximation, which includes all
the extreme three-dimensional spherical, two-dimensional
platelet, and one-dimensional needle shapes, appears espe-
cially useful. The weighted effective medium approximation
is not only simple for application, but also has the mathe-
matical justification that the scheme corresponds, at least,
to some hierarchical model, therefore it never violates exact
mathematical relations imposed upon the effective proper-
ties including the bounds.
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Appendix A

The differential scheme construction process for Eqs.
(4)–(7), and more generally Eq. (19), starts with the base
matrix phase N + 1. At each step of the procedure, we
add proportionally infinitesimal volume amounts viaiDt
ðDt� 1; ai ¼ 1; . . . ;Ni; i ¼ 1; . . . ;NÞ of randomly ori-
ented inclusions into already constructed composite of
the previous step, which contains volume fractions viai t of
the inclusion phases (the parameter t increases from 0 to
1, as the differential scheme proceeds). The newly added
particles will see an effective continuum, owing to their rel-
ative sizes, and the new composite can be considered as a
dilute suspension of particles from phases ai, of volume
fractions

viaiDt

1þ
PN

i¼1

PNi
ai¼1viaiDt

¼ viaiDt
1þ vIDt
in a matrix of conductivity k (vI is the total volume frac-
tions of the included phases). The effective conductivity
of the new composite is
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k þ dk ¼ k þ k
XN

i¼1

XNi

ai¼1

viaiDt
1þ vIDt

Diaiðki; kÞ:

Since the volume fraction of the included phase ai increases
by

viai dt ¼ viai t þ viaiDt
1þ vIDt

� viai t ¼
viaiDt

1þ viaiDt
ð1� vItÞ;

we obtain the following differential equations for the effec-
tive conductivity of the composite (Eq. (19))

dk
dt
¼ k

1� vIt

XN

i¼1

XNi

ai¼1

viai Diaiðki; kÞ;

kð0Þ ¼ kNþ1; 0 6 t 6 1:

If in the equation above, we eliminate the matrix phase
N + 1, then vI ¼ 1, and at the end of the process t! 1,
the multiplier k=ð1� vItÞ ¼ k=ð1� tÞ ! 1, hence the
sum

XN

i¼1

XNi

ai¼1

viai Diaiðki; kÞ ! 0;

as k should be finite. Thus we obtain the effective medium
equations (5)–(7) as specific cases.

Appendix B

Eq. (15) can also be rewritten as

XN

i¼1

ki

XNi

ai¼1

viai

1

kiAiai þ keð1� AiaiÞ
þ 1

kiBiai þ keð1� BiaiÞ

�

þ 1

kiCiai þ keð1� CiaiÞ

�

¼ ke

XN

i¼1

XNi

ai¼1

viai

1

kiAiai þ keð1� AiaiÞ
þ 1

kiBiai þ keð1� BiaiÞ

�

þ 1

kiCiai þ keð1� CiaiÞ

�
:

As 0 6 Aiai ;Biai ;Ciai 6 1, the left-hand-side expression of
the above equation is a decreasing function of the positive
variable ke, while the right-hand-side one is an increasing
function, hence the equation does not have more than
one solution. On the other hand, the left-hand-side of
(15) is positive if ke 6 kmin ¼ minfki; i ¼ 1; . . . ;Ng, and
negative if ke P kmax ¼ maxfki; i ¼ 1; . . . ;Ng, hence the
unique solution ke of (15), indeed, exists within the interval
½kmin; kmax�.
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